Evaluation of Hip Girdle Pain in the Athlete

John H Healey MD River Valley Orthopedics Oct 2017

Hip Girdle Pain in the Athlete

- Challenging
- Many conditions can present with overlapping pain complaints
- Intra-articular vs Extra-articular
- ? Referred from spine, abdomen/pelvis
- Pain anterior, lateral, posterior, knee, leg
- Surgery hip joint with arthroscopy
 - ?Non-surgical treatments, who needs surgery

Introduction

- All ages, all activity levels
- Groin pain 10% of visits to Sports Med Centers
- Cutting, & forceful acceleration/deceleration
- Challenges: Location of pain no guarantee of origin of pain
 - Clohisy '09: Hip Impingement surgery patients
 - 88% groin pain, 67% lateral pain, 35% anterior thigh pain, 29% buttock pain, 27% knee pain, and 23% low back pain

• Overlap in innervations

- Anterior capsule: Obturator & femoral nerves (L2-L4)
- Posterior capsule: Sciatic & Sup Gluteal N (L4-S1)
- These same nerve roots (L2-S1) supply the Lumbar spine, SI joint & lower extremity
- The variety of pain presentations, and pain overlap, need to consider hip as the origin almost any lower body pain condition

Sources of Hip Pain

- intra-articular / Hip joint
- extra-articular structures of hip girdle
- referred sources from lumbopelvic
- referred from visceral structures ab & pelvis.

Differential Diagnosis of Hip Pain: Musculoskeletal Causes (Prather et al '14)

Intra-articular

- Ligamentum teres tear
- Hip dislocation/subluxation/capsular injury
- Fracture/stress fracture
- Synovitis
- Infection
- Osteonecrosis of femoral head
- Osteochondritis dissecans
- Legg-Calve-Perthes disease
- Slipped capital femoral epiphysis
- Femoroacetabular impingement
- Developmental hip dysplasia
- Acetabular labral tear
- Osteoarthritis

• <u>Extra-articular</u>

- Trochanteric Bursitis
- Muscle strain/tendinopathy/tear: gluteus medius/minimus, piriformis, adductors, rectus
- femoris, iliopsoas, rectus abdominis, proximal hamstrings, tensor fascia lata
- Greater trochanteric pain syndrome
- Snapping hip syndrome
- Regional musculoskeletal
- Pubic ramus stress fracture/osteitis pubis
- Sports hernia/pubalgia
- Lumbar spine: facet joint pain, lumbosacral radiculopathy
- Sacroiliac joint dysfunction
- Peripheral nerve entrapment: genitofemoral, iliohypogastric, ilioinguinal, lateral femoral
- cutaneous, obturator, pudendal, superior and inferior gluteal

Differential diagnosis of Hip Pain: Non-Musculoskeletal (Prather et al '14)

- Gastrointestinal: appendicitis, diverticulitis, lymphadenitis, inflammatory bowel disease,
- inguinal/femoral hernia
- Genitourinary: endometriosis, prostatitis, urinary tract infection, pelvic inflammatory
- disease, ovarian cysts, nephrolithiasis, ectopic pregnancy
- Pelvic tumor

Hip Pain: Skeletally immature

• Legg Calve Perthes Disease

 Age 4-10, boys>girls, repetitive microvascular trauma femoral head

- Slipped Capital Femoral Epiphysis (SCFE)
 - Adolescents, boys 2.4 X risk, most common cause hip pain in adolescents, essentially a fracture through growth plate, endocrine disorder, heavy kids

Hip Pain: Intra-Articular Sources

Femoral Neck Stress Fx

- 10% of all stress fractures
- High rate morbidity, non-union & AVN
- Runners, Military, females, skeletally mature
- sudden increase training intensity or duration

Hip Impingement

- Bony structural deformity extra bone on femoral head and or socket/acetabulum
- Leads to abnormal bone contact, and injury to labrum and cartilage
- Up to 30% incidence of such bone changes
- Cause: ?Abnormal skeletal development due to high impact activity
- Types
 - Cam young males, but females catching up
 - Pincer: Higher Xray incidence in males, but seen more mid age Females
- Females:
 - more subtle Xrays findings
 - ? weaker hip stabilizing muscles & joint laxity
 - Places more stress on the joint from Increased ROM and bone contact

Acetabular Dysplasia: Developmental Dysplasia Hip

- Insufficient or shallow socket
- Females > males
- Overloads cartilage and labrum, leads to labrum tears and early Hip arthritis

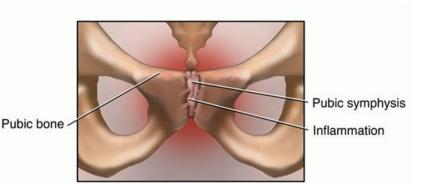
Acetabular Labrum tears

- A fibrocartilage ring around the edge of the acetabulum
- Acts to stabilize hip, and seal the fluid around the head
- Peripheral third has blood supply, poor healing capability
- Densely innervated anteriorly, so very sensitive
- Tears:
 - Most tears related to bone abnormality (Hip impingement, dysplasia)
 - Trauma, a legitimate, but infrequent cause
 - Dancers frequent extreme motions, increase stress, higher incidence of tears despite normal bone

Hip Avascular Necrosis (AVN)

- End result of loss of blood supply to femoral head
- Legg Calve Perthes, Slip Cap Fem Epiphysis, Femoral Neck Stress Fracture can lead to this
- Often unknown etiology
- Known causes:
 - Corticosteroid use, excessive alcohol use, blood dyscrasias, Deep sea divers/high barometric pressure

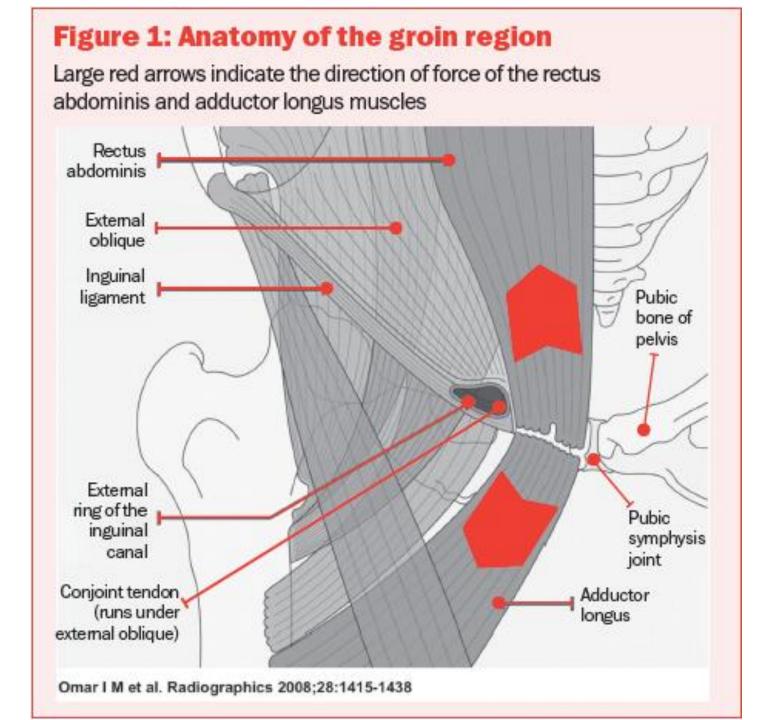
Hip Arthritis

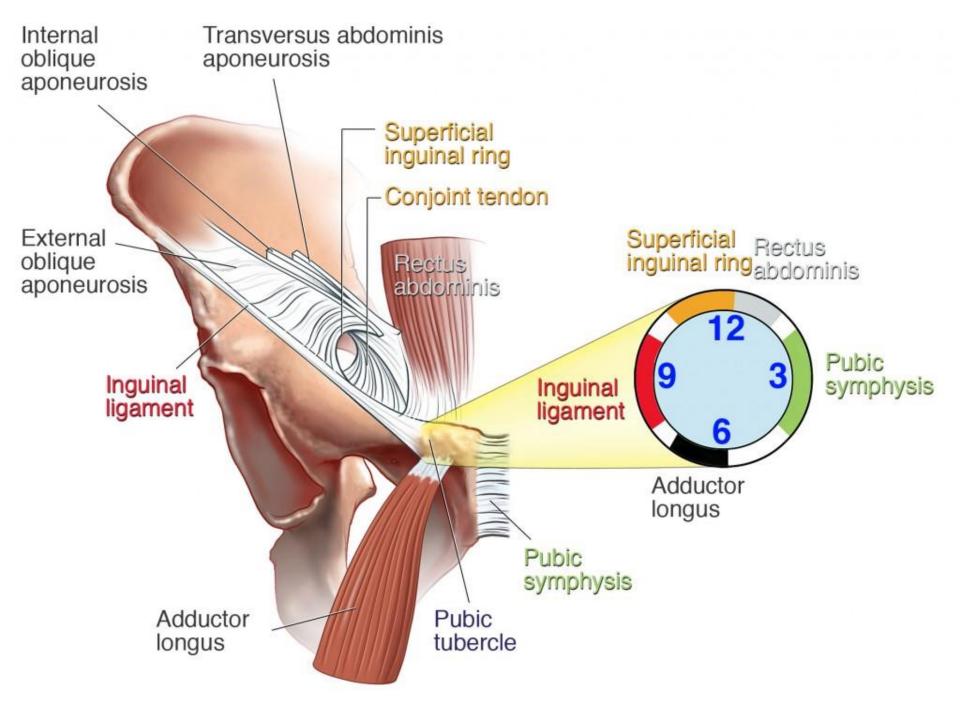

- Degeneration of articular cartilage and subchondral bone
- ~80% caused by: Trauma, hip impingement labrum tears, AVN, Dysplasia, SCFE, Perthes, etc.

Hip Pain: Extra-Articular Hip Sources

- Muscles
- Tendons
- Bursa
- Other soft tissue

Pubic Symphysis


- Pubic symphysitis progress to Osteitis pubis
- Pain at symphysis pubis, associated with repetitive overload, direct trauma or instability
- Kick & rotation, adductor & rectus abdominis
- Inflammatory response in joint & muscles
- If untreated, progresses to bone reaction, fracture or arthritis of the joint, then called Osteitis pubis
- Risks increase with history of trauma, infection, pregnancy or rheumatologic diseases



Sport Hernia, Athletic Pubalgia, Core Muscle Injury

- Lower abdominal wall pain, inguinal pain
- Hyperextension of rect abdom insertion pubis
- Injury, weakness, "hernia" posterior inguinal wall
- Gilmore's groin is a less common subset with external oblique tear and conjoint tendon tear
- Risk Factors:
 - Repetitive rotation upper leg/torso, hockey, soccer, rugby
 - Shear pubic symphysis from repetitive trunk hyperextension & thigh hyperabduction
 - muscle imbalance strong proximal thigh muscles & weaker abdominal muscles

Adductor Strain

- Most common cause of groin pain in athletes
- Eccentric contraction, hockey/soccer
- Along with lower ab , adductors stabilize pelvis & low extremity in closed chain
- Risk factors: weakness, decreased ROM, muscle imbalance AB/Add
- Add Longus (1 of 6) usually the one injured
 - poor mechanical advantage, low tendon--muscle ratio at its origin on the pubis, predispose it to injury

Iliopsoas Tendon & Internal Snapping Hip

- IP (iliopsoas), primary hip flexor, functional stability hip/pelvis/spine, disease of IP can be cause or result of compensatory movement patterns
- Ant hip pain, assoc w low back pain, w ecc or concentric contractions, uphill running or lengthening stride
- Mechanisms:
 - guarding for primary spine or intra-articular hip disorder, leads to 个muscle activation, tendon overload & shortening
 - IP becomes painful when stretched during hip extension.
 - Also, inefficient movement patterns & posture such as excessive anterior pelvic tilt cause IP to activate overlengthened position, reduces effectiveness

Iliopsoas & Internal Snapping

- Click/pop with flexion, extension, rotation. Dancers, soccer, weight training, runners
- Also intra-articular snapping and External snapping, not caused by Psoas
- Internal snapping:
 - IP catches over iliopectineal prominence, fem head, lesser trochanter, or paralabral cysts
- Most likely from chronic IP dysfunction
 - Tendon structurally normal, not activating at its optimal length
 - einternal snapping hip and acetabular labral
- Labrum tears & Internal Snapping often found together
 - possibly due to similar movement patterns predispose to both
 - Or compensation for one predisposes the other.

Lateral Hip Pain

- Convention has it that lateral pain is extraarticular in origin
- Intra-articular, Lumbar and SI joint are also known origins to cause Lateral Hip pain

Greater Trochanteric Pain Syndrome (GTPS)

- Formerly Trochanteric bursitis used to label lateral hip pain, now it is clear other pathologies (Tendinopathy, tear etc.) other than bursitis cause/contribute to pain, hence GTPS
- Middle aged athletes, Fem > male, ? Due to Wider pelvis/femur ratio females
- Seen in combination with: pes planus, ITB friction syndrome, obesity, & arthritis Hip/Spine/Knee
- Mechanism:
 - Shear of peritrochanteric soft tissues from abductor weakness or gait disturbance
 - Biomechanical dysfunction \rightarrow tissue overload, \rightarrow initial bursitis
 - Without correction of faulty movement patterns & muscle strength/length imbalances, evolves into gluteus medius & minimus tendinopathy, enthesopathy, tendon thinning, and tears

External Snapping Hip

- The most common snapping, usually asymptomatic
- Transient catching of G maximus tendon or ITB on the greater trochanter as move between flexion and extension
- Same biomechanical issues as seen w GTPS

Posterior Pelvic Pain (Not Spine)

- Located post iliac crest to gluteal fold
- Pain not referred from other (Spine, abdomen)
- Pain here is often assoc with trauma, arthritis, biomechanical dysfunction, & pregnancy
- Multiple causes:
 - SI joint, SIJ ligaments, sacral stress fracture, Pelvic floor muscles (piriformis, obturator Int),
 - sciatic nerve compression (piriformis syndrome)
 - hip impingement between the lesser trochanter & ischial tuberosity (ie, ischiofemoral impingement)
 - hamstring injuries (skiers, sprinters, middistance runners, contact sport athletes)

Referred pain

- Most commonly neurogenic from lumbar spine or nerve root compression
- Pelvic floor muscles contribute to hip stability, their dysfunction and pain can be assoc with bowel, bladder and sexual changes

Determining the cause

- History
 - Age, sport/repetitive motion
 - Progression, severity, exacerbating & alleviating factors
 - Acute onset, muscle stretch/contract with pop, likely musculotendinious
 - Acute onset with collision, possibly fracture
 - Burning, neurologic
- dull, achy, insidious-onset pain, worsens with activity think intra-articular origin

History

- Pain w prolonged sitting, standing, sharp pain with pivoting/kicking think labrum tear or hip impingement
- Dull pain, worsens w activity, after recent increased training, think stress fracture
- Severe pain that prevents weight bearing, think unstable fracture SCFE, AVN, FNSF.

Location pain

- Anterior pain:
 - most commonly intra-articular
 - extraarticular such as pubic ramus stress fractures, pubic symphysis, adductor or abdominal wall injury, radiculopathy from high lumbar nerve roots
 - Lateral Pain: (can be intra-articular)
 - More commonly GTPS, ITB dysfunction, and lumbar L4-L5 nerve
 - GTPS lateral hip pain sleeping on side , climbing stairs, crossing leg
 - "C" sign over ant-lat hip for Impingement & Lab tear

Location: Posterior

- Again, can be intra-articular
 - 29% of FAI, 17% with DDH, 38% with isolated acetabular labral tears posterior pelvic pain
- SI Joint, lumbar

Physical Exam: Non-Specific

- Antalgic gait
- Trendelenburg gait
- Lateral lurch gait
- Decreased or asymmetric stride length
- Foot internal or external rotation during stance and/or gait
- Asymmetry iliac crest & trochanteric heights when standing and/or supine

Exam: Intra-Articular

- Asymmetric or reduced passive ROM
- Provocative tests
 - Hip log roll test
 - Anterior hip impingement test
 - Dynamic Ext Rotation Impinge Test
 - Hip scour test
 - FABER (Flex Abd Ex Rot) Patrick test
 - Stinchfield resisted hip flexion test
 - Posterior hip impingement test
 - Traction Relocation test

Exam: Extra-Articular Problems

- Tenderness / Palpation:
 - Iliopsoas
 - Rectus Abdominis insertion
 - Conjoint tendon
 - Inguinal ring/posterior inguinal canal
 - Pubic tubercle
 - Adductor origin
 - Greater trochanteric region
 - Hamstring origin
- Muscle Tightness
 - Thomas test- hip flexors
 - Ober Test- fascia lata

Exam: Not Hip or Mixed

- Pain with ROM lumbar spine
- Motor/Sensory/ Reflex exam findings
- Positive neural tension signs
 - Slump-sit test
 - Straight leg raise test
- Femoral nerve stretch test
- Obturator nerve stretch test

Hip Examination

- Exam:
 - "20" point exam
 - 5 positions
 - Stand, sit, supine, lateral & prone
 - Special tests

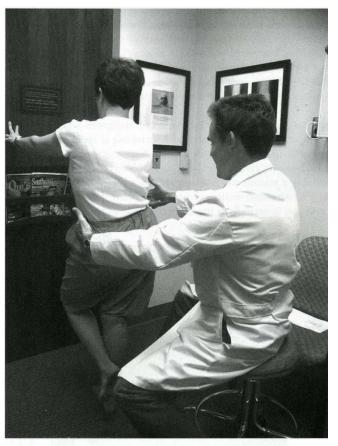


Figure 4.1. Trendelenburg sign is a test of the contralateral leg abductors. The patient lifts the leg and the pelvis is assessed for at least 2 cm of sag. (From Berry D, Steinman S. *Orthopaedic Surgery Essentials: Adult Reconstruction.* Philadelphia, PA: Lippincott Williams & Wilkins; 2007, with permission.)

Physical Exam

Standing

4 Ls, plus Trendelenburg

Limp: Gait (Pelvic "Wink"), Posture, Standing Ab, Flex & squat

Length:

Laxity: Ligament Assessment Beighton's Criteria

> -Thumb, 5th >90°, Elbow>10°, Knee >10° and Palm to floor.

- 3 of 5 =hypermobility

Lumbar Alignment AP/Lat, Scolio, Lordosis

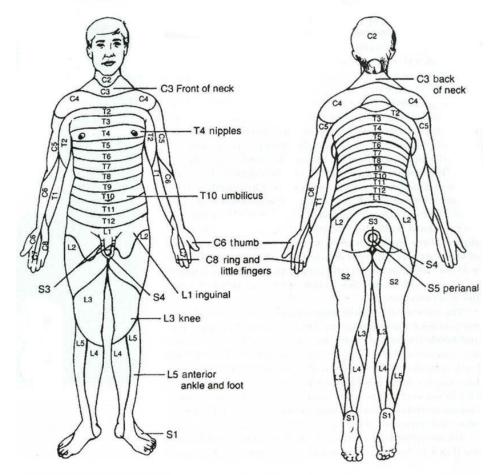
Trendelenburg:

single leg wt on Left note Right Hip **drops>2cm**.

Beighton

Physical Exam: Sitting

Neuro:


-L2 –S1 Motor, sens & reflex

Vascular

Special

-Pace (Sitting test Piriformis)

-Resist Abd & ExRot →**buttock** pain

BD Steinman, Orthopedic Essentials:Adult Reconstruction '07

Exam: Supine

Palpation: Hip Flexor, groin/Conjoint tendon/superficial inguinal ring/rectus abdominis, adductor tendon

ROM:

Tests:

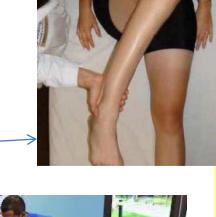
Log roll worry

Stinchfield 30-40°Straight leg Ant Impingement FADDIR

Post Impingement ExtAbExR **FABER** distance knee to table Thigh Squeeze Test

Apprehension test *LABRUM* Tests:

Psoas Tests:


Snap (Internal Snapping): FABER to Extension neutral rot Ludloff

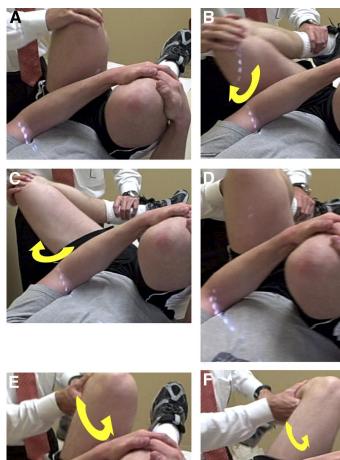
Flex Hip @90° & knee @0°

Supine: Labrum Tests

McCarthy Flex both, Ex Rotate one +<u>Pop</u>

Labrum Stress: Flex to Ext & rotate

DEXRIT Dynamic Ex Rotate


DIRI Dynamic Int Rotate

Butterfly Ab Flex IR

FlexABExRot/Patrick

Traction Relocation Test

Point Palpation:

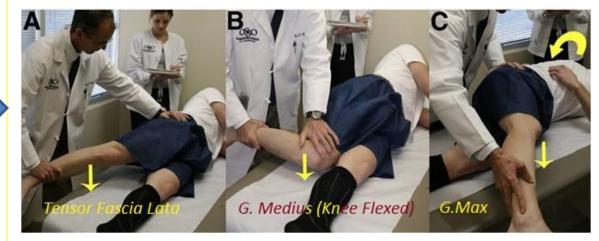
Troch, G Max, Piriformis, etc.

Abductor Strength:

Hip Flex / Knee @ 0° G.Max Hip Neut/ Knee @90° G Medius Hip Ext / Knee @0° T. Fasc Lata

Ober's Test: Flexibility

Adduct thigh touch Knee to table Knee 0°TFL& G.Max, 90° G.Med


Stability Tests:

Ab ExRot "Crank test" Ext Ex Rot "Apprehension"

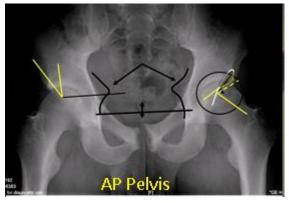
Provocative tests:

Dynamic Pirformis test Post Impingement test Bicycle ITB Pop test

Physical Exam: Lateral

Exam: Prone

"Ely"Test Rectus tightness
"Craig" test femoral anteversion
Femoral Nerve Stretch test
Palpation:
SI Joint
Ischium/Hamstring


Piriformis

Diagnostic Testing

- Xrays
- MRI
- Ultrasound
- Cat Scan
- Diagnostic injections

Xrays

- AP Pelvis, 45°Dunn Lateral, False Profile View
- Least mount of radiation while still able to assess arthritis, fracture, impingement & dysplasia

45 Deg Dunn Lateral Technique

MRI

- Plain MRI: Good to assess extra-articular
 - Sensitivity 68% Rectus tears, 86% adductor tears
 - Excellent for stress fx, fractures, AVN, infections, inflammatory conditions and neoplasm.
 - Labrum tears less then 60% sensitivity, 20% for cartilage
- MRI Arthrogram: Better for intra-articular
 - Far from perfect, still only 71% sensitivity for labrum tears and 44% for cartilage.

Ultrasound

- Good for superficial structures and evaluation of popping pathologies with dynamic test
- Limited value for deep structure evaluation and in heavy patients
- Very operator dependent
- Use increasing, primarily for diagnostic and therapeutic injections

Injections: Diagnostic and Therapeutic

- Valuable in sorting out origin of pain
- Looking for 50% reduction in pain
- Intra vs extra-articular
 - Keep hip joint volume low to avoid painful tensioning of joint capsule (5 cc)
- Psoas bursa
- Trochanter
- Piriformis

Non-Surgical Treatment

- General:
 - pain reduction
 - patient education
 - activity modification
 - movement retraining
 - return to play with a maintenance
- More specific treatment tailored to diagnosis
- Intra-articular vs Extra-Articular

Treatment: Intra-Articular

- Pre-arthritic Hip joint conditions
 - Hip impingement, Labrum tear, Dysplasia
 - No pain no gain, increased risk
 - Sport/movement increases pain and damage
- Limited circumstances, w labrum tear, can rehab and return to sport
- patient ed, activity mod, Standardized PT protocol, & injection as indicated for pain

Physical Therapy

- neuromuscular retraining
- avoidance of damaging motions
- precision of hip motions, decrease ant glide of the femur in on the acetabulum
- Optimize muscle strength/length of hip flexors, extensors, lateral rotators, & abdominals;
- Avoid hip hyperextension, rotation of acetabulum on femur under load
- Avoid painful hip ROM

Treatment: Hip Arthritis

- Similar to pre-arthritis conditions, more restrictive
- Rest/avoidance of pivot, Int rotation, & end range Flex
- Address impairments, muscle inhibition, shortened muscles, & strength deficits in painfree range
- Medications, injections, ? supplements

Treatment: Extra-Articular

- Greater Troch Pain Syndrome:
 - Stretch tensor fascia lata, ITBand & Hip Flexors
 - Strengthening abductor, external rotator, and extensor musculature
 - Activity modification, NSAIDS, modalities (ice/heat/US/Estim) and injections

Conclusion

- Hip/pelvic girdle injuries are common
- Diagnosis challenging.
- intra-articular, extra-articular, referred sources, & coexisting conditions
- comprehensive history & exam
- all hip disorders warrant a trial of
 - conservative management
 - education, therapeutic exercise, sports-specific activity modification.
- without proper treatment, many hip disorders result in chronic disorders & tissue degeneration
- Pre-arthritic intra-articular hip problems common in athletes
 - Surgical options available
 - appropriate conservative treatment important to offer the best treatment options tailored to each athlete's goals, anatomy and severity